Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
Standard imitation learning can fail when the expert demonstrators have different sensory inputs than the imitating agent. This is because partial observability gives rise to hidden confounders in the causal graph. We break down the space of confounded imitation learning problems and identify three settings with different data requirements in which the correct imitation policy can be identified. We then introduce an algorithm for deconfounded imitation learning, which trains an inference model jointly with a latent-conditional policy. At test time, the agent alternates between updating its belief over the latent and acting under the belief. We show in theory and practice that this algorithm converges to the correct interventional policy, solves the confounding issue, and can under certain assumptions achieve an asymptotically optimal imitation performance.
translated by 谷歌翻译
我们提出了一种新型的机器学习方法,用于从晶格量子场理论的高维概率分布中取样。我们的建议不是迄今为止用于此任务的深层体系结构,而是基于单个神经效果层,并结合了问题的完整对称性。我们在$ \ phi^4 $理论上测试了我们的模型,这表明它系统地优于先前提出的采样效率基于流动的方法,并且对于较大的晶格而言,改进尤其明显。与以前的基线模型相比,我们将关键指标(有效样本量)提高了,从1%到91%,尺寸为$ 32 \ times 32 $。我们还证明,我们的模型可以成功学习一个连续的理论家庭,并且可以将学习结果转移到更大的晶格中。与传统的基于MCMC的方法相比,这种概括能力进一步突出了机器学习方法的潜在优势。
translated by 谷歌翻译
我们提出了一种连续的标准化流量,用于从物理学中量子域理论的高尺寸概率分布采样。与迄今为止此任务的深度架构相比,我们的提案基于浅设计并包含问题的对称性。我们在$ \ PHI ^ 4 $理论上测试我们的模型,表明它系统地优于采样效率的REALNV基准,其两个增加对于较大格子的差异。在我们考虑的最大格子上,大小为32美元,我们改善了一个关键的公制,有效的样本量,从1%到66%w.r.t.Realnvp基线。
translated by 谷歌翻译
计算流体动力学(CFD)是一种有价值的工具,用于动脉中血流动力学的个性化,非侵入性评估,但其复杂性和耗时的大自然在实践中禁止大规模使用。最近,已经研究了利用深度学习进行CFD参数的快速估计,如表面网格上的壁剪切应力(WSS)。然而,现有方法通常取决于表面网格的手工制作的重新参数化以匹配卷积神经网络架构。在这项工作中,我们建议使用Mesh卷积神经网络,该网状神经网络直接在CFD中使用的相同的有限元表面网格操作。我们在使用从CFD模拟中获得的地面真理培训并在两种合成冠状动脉模型的两种数据集上培训和评估我们的方法。我们表明我们灵活的深度学习模型可以准确地预测该表面网上的3D WSS矢量。我们的方法在少于5分钟内处理新网格,始终如一地实现$ \ LEQ $ 1.6 [%]的标准化平均值误差,并且在保持测试集中的90.5 [%]中位近似精度为90.5 [%]的峰值,比较以前发表的工作。这证明了CFD代理建模的可行性,使用网状卷积神经网络进行动脉模型中的血流动力学参数估计。
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
癌症护理中的治疗决策受到随机对照试验(RCT)的治疗效应估计的指导。 RCT估计在某个人群中,一种治疗与另一种治疗的平均效应。但是,治疗可能对人群中的每个患者都不同样有效。了解针对特定患者和肿瘤特征量身定制的治疗的有效性将实现个性化的治疗决策。通过平均RCT中不同患者亚组的结果来获得量身定制的治疗效果,需要大量的患者在所有相关亚组中具有足够的统计能力,以实现所有可能的治疗。美国癌症联合委员会(AJCC)建议研究人员开发结果预测模型(OPMS),以实现个性化治疗决策。 OPM有时称为风险模型或预后模型,使用患者和肿瘤特征来预测患者的结局,例如总体生存。假设这些预测对于使用“只有在OPM预测患者具有高复发风险的情况下开出化学疗法的规则”之类的规则,对治疗决策有用。 AJCC认识到可靠预测的重要性,发布了OPM的清单,以确保设计OPM设计的患者群体的可靠OPM预测准确性。但是,准确的结果预测并不意味着这些预测会产生良好的治疗决策。从这个角度来看,我们表明OPM依靠固定的治疗政策,这意味着被发现可以准确预测验证研究结果的OPM在用于治疗决策的情况下仍会导致患者伤害。然后,我们提供有关如何开发对个性化治疗决策有用的模型以及如何评估模型是否具有决策价值的指导。
translated by 谷歌翻译
病理诊断依赖于组织学染色的薄组织样品的目视检查,其中使用不同类型的污渍来对比并突出各种所需的组织学特征。但是,破坏性的组织化学染色程序通常是不可逆的,因此很难在同一组织段上获得多个污渍。在这里,我们通过层叠的深神经网络(C-DNN)演示了虚拟的染色转移框架,以数字化将苏木精和曙红(H&E)染色的组织图像转化为其他类型的组织学染色。与单个神经网络结构不同,该结构仅将一种染色类型作为一种输入来输出另一种染色类型的数字输出图像,C-DNN首先使用虚拟染色将自动荧光显微镜图像转换为H&E,然后执行从H&E到另一个域的染色转换以级联的方式染色。在训练阶段的这种级联结构使该模型可以直接利用H&E和目标特殊污渍的组织化学染色图像数据。该优势减轻了配对数据获取的挑战,并提高了从H&E到另一个污渍的虚拟污渍转移的图像质量和色彩准确性。我们使用肾针芯活检组织切片验证了这种C-DNN方法的出色性能,并将H&E染色的组织图像成功地转移到虚拟PAS(周期性酸 - 雪)染色中。该方法使用现有的,组织化学染色的幻灯片提供了特殊污渍的高质量虚拟图像,并通过执行高度准确的污渍转换来创造数字病理学的新机会。
translated by 谷歌翻译
开发了基于深度学习的虚拟染色是为了将图像与无标签的组织截面形成鲜明对比,以数字方式与组织学染色相匹配,组织学染色是耗时,劳动密集型且与组织破坏性的。标准的虚拟染色需要在无标签组织的整个幻灯片成像过程中使用高的自动对焦精度,这会消耗总成像时间的很大一部分,并可能导致组织光损伤。在这里,我们介绍了一个快速的虚拟染色框架,该框架可以染色未标记的组织的散焦自动荧光图像,从而达到与无焦标签图像的虚拟染色相同的性能,还可以通过降低显微镜的自动焦点来节省大量的成像时间。该框架结合了一个虚拟自动化的神经网络,以数字重新聚焦了散落的图像,然后使用连续的网络将重新聚焦的图像转换为几乎染色的图像。这些级联网络构成了协作推理方案:虚拟染色模型通过培训期间的样式损失使虚拟自动化网络正常。为了证明该框架的功效,我们使用人肺组织训练并盲目地测试了这些网络。使用较低的焦点精度的4倍焦点,我们成功地将专注于重点的自动荧光图像转换为高质量的虚拟H&E图像,与使用精心注重的自动荧光输入图像的标准虚拟染色框架相匹配。在不牺牲染色质量的情况下,该框架减少了无标签的全滑动图像(WSI)虚拟染色所需的总图像获取时间〜32%,同时降低了约89%的自动对焦时间,并且具有〜89%消除病理学中费力且昂贵的组织化学染色过程的潜力。
translated by 谷歌翻译
人表皮生长因子受体2(HER2)生物标志物的免疫组织化学(IHC)染色在乳腺组织分析,临床前研究和诊断决策中广泛实践,指导癌症治疗和发病机制调查。 HER2染色需要由组织医学表演表演的艰苦组织处理和化学处理,这通常需要一天,以便在实验室中准备,增加分析时间和相关成本。在这里,我们描述了一种基于深度学习的虚拟HER2 IHC染色方法,其使用条件生成的对抗网络培训,训练以便将未标记/标记的乳房组织部分的自发荧光显微镜图像快速转化为明亮场当量的显微镜图像,匹配标准HER2 IHC染色在相同的组织部分上进行化学进行。通过定量分析证明了这一虚拟HER2染色框架的功效,其中三个董事会认证的乳房病理学家盲目地评级了HER2的几乎染色和免疫化化学染色的HER2整个幻灯片图像(WSIS),揭示了通过检查虚拟来确定的HER2分数IHC图像与其免疫组织化学染色的同类一样准确。通过相同的诊断师进行的第二种定量盲化研究进一步揭示了几乎染色的HER2图像在核细节,膜清晰度和染色伪像相对于其免疫组织化学染色的对应物的染色伪影等级具有相当的染色质量。这种虚拟HER2染色框架在实验室中绕过了昂贵,费力,耗时耗时的IHC染色程序,并且可以扩展到其他类型的生物标志物,以加速生命科学和生物医学工作流程的IHC组织染色。
translated by 谷歌翻译